Sparse Unmixing of Hyperspectral Data
نویسندگان
چکیده
منابع مشابه
Sparse Hyperspectral Unmixing
Given a set of mixed spectral vectors, spectral mixture analysis (or spectral unmixing) aims at estimating the number of reference materials, also called endmembers, their spectral signatures, and their fractional abundances. A semi-supervised approach to deal with the linear spectral unmixing problem consists in assuming that the observed spectral vectors are linear combinations of a small num...
متن کاملSparse Unmixing of Hyperspectral Data with Noise Level Estimation
Chang Li 1,2,3, Yong Ma 1,*, Xiaoguang Mei 1,*, Fan Fan 1, Jun Huang 1 and Jiayi Ma 1 1 Electronic Information School, Wuhan University, Wuhan 430072, China; [email protected] (C.L.); [email protected] (F.F.); [email protected] (J.H.); [email protected] (J.M.) 2 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China 3 Schoo...
متن کاملUnmixing Hyperspectral Data
In hyperspectral imagery one pixel typically consists of a mixture of the re ectance spectra of several materials, where the mixture coe cients correspond to the abundances of the constituting materials. We assume linear combinations of re ectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reectance c...
متن کاملHyperspectral Unmixing with Robust Collaborative Sparse Regression
Chang Li 1, Yong Ma 2,∗, Xiaoguang Mei 2, Chengyin Liu 1 and Jiayi Ma 2 1 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (C.L.); [email protected] (C.L.) 2 Electronic Information School, Wuhan University, Wuhan 430072, China; [email protected] (X.M.); [email protected] (J.M.) * Corresponden...
متن کاملStructured Sparse Method for Hyperspectral Unmixing
Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method from the following two a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2011
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2010.2098413